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Analytic continued fraction technique for bound and 
confined states for a class of confinement potentials 

D P Datta and S Mukherjee 
Department of Physics, North Bengal University, Raja Rammohunpur, Dist. Darjeeling- 
734430, India 

Received 5 June 1979, in final form 12 March 1980 

Abstract. Analytic continued fraction theory is applied to study the convergence and 
analyticity of the infinite continued fraction representation of the Green function for a class 
of confinement potentials in terms of the Coulomb-like coupling constant. The possibility 
of a perturbative expansion in the powers (inverse powers) of the coupling constant is also 
investigated. 

1. Introduction 

The concepts of asymptotic freedom and quark confinement in non-Abelian gauge 
theories are expected to lead to a better understanding of the quark dynamics. The 
assumed high masses of the newly discovered flavours such as c and b permit one to 
consider the corresponding colour-singlet families as non-relativistic two-particle 
(quark-antiquark) bound states described by a Schrodinger equation (Appelquist and 
Politzer 1975). This picture is fairly successful in the charmonium model (Eichten et a1 
1976) description of the q!~ family. The model assumes a potential consisting of a 
Coulombic term and a quark confining potential, whose form is not very precisely 
determined. It has been shown by Grosse (1977) and Martin (1977) that the correct 
order of levels can be obtained with any potential of the form VJr) = br“ where 
0 < (T < 2. A confining potential of the type 

V(r)  = -a/r + br + cr2 (1.1) 

has also been studied (Gupta and Khare 1977) in this connection. The success of the 
charmonium model prompts one to treat the newly discovered Y particles (Rosner et a1 
1978) in an exactly similar manner. But, the exact form of the quarkonium potential 
being unknown to a great extent, it is perhaps desirable to study the general analytic 
properties of a large class of confinement potentials. In this spirit, Singh etal( l977)  and 
Khare (1978) studied the analyticity and eigenvalue problem of the Schrodinger 
equation with a class of potentials of the form (1.1). From the consistency requirement 
for the existence of the solutions of the corresponding difference equation, they 
constructed the Green function ‘G(E)’ for the problem in the form of an infinite 
continued fraction and used the analytic theory of continued fractions to study its 
convergence and analyticity. They argued that the Green function can be transformed 
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equivalently into an.S-fraction of the form 

1 
KIG +- l 1  

K2 +- K3&+.. 
where the K,, are positive constants, the variable cu‘ being the inverse of the complexified 
harmonic coupling a, so that the theorems applicable to the S-fractions can be directly 
used to study the analyticity of the Green function. However, the quantities K,, are 
actually complicated functions of G .  We have shown later (first part of the proof of 
theorem 3.1) that the Green function does converge for positive real values of a, but the 
convergence for arbitrary a in the complex a-plane is not known. To overcome this 
difficulty, we have considered the convergence and analyticity of the Green function 
and its relation to the perturbation expansion in terms of the Coulomb coupling 
constant, instead of the harmonic coupling constant. This permits us to discuss the 
problem in a rigorous manner. The study is relevant also because, as pointed out by 
Eichten et a1 (1978), by varying the Coulomb parameter one can partially accom- 
modate the short-distance effects such as (i) the spin-dependent forces and (ii) the 
logarithmic violation of scaling in the region of asymptotic freedom. Also, a pertur- 
bation expansion in the Coulomb parameter (or its inverse) may be used with advantage 
in many applications. 

The presentation of the paper will be as follows. In Q 2, we construct, following 
Singh etal, the Green function for the potential (1.1). In § 3, we discuss its convergence 
and analyticity and also the possibility of a perturbation expansion in the Coulomb 
parameter. In Q 4, we specialise to the case of a harmonium potential (b  = 0). Our 
results are summarised in the last section. 

2. Construction of the Green function 

The radial Schrodinger equation in potential (1.1) is given by 

~ “ ( r )  + [ ( 2 p / h 2 ) ( ~  + a / r  - br - cr2)  - l(1+ 1 ) / r 2 ] ~  ( r )  = o (2.1) 

where E is the energy of the system, and I the relative orbital angular momentum. We 
assume that c > 0, while the signs of a and b are left free. The appropriate asymptotic 
behaviour of the solution of (2.1) is obtained by writing 

R ( r )  = rl+’ exp(-$ar2 - pr)g(r) (2.2) 

where a, p are as yet unknown constants. The function g ( r )  satisfies the equation 

g f ’ + 2 [ ( l + 1 ) / r - a r - p ] g ’ + { ~ - \ 2 1 + 3 ) a  + [ a  -2p(I+l)] / r}g = O  (2.3) 

where we choose 

a = + [ ( 2 p / h 2 ) C y 2 ,  

= ( 2 , ~ ~ / h ~ ) ~ ’ ~ b / c ’ ’ ~ ,  

and write 
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To solve equation (2.3), we write 

and obtain the three-term difference equation 

( n  + 2 ) ( n  +21+3)pn+2+[a + y ( n  +1+2)]p, ,+l+[~ - (2n  +21+3)a]pn = O  (2.8) 

where y = -2p. All p ,  with negative values of n vanish identically with the choice 
p-l = 0. We can rewrite (2.8) as 

Pn+l  - [ E  - (2n  + 21 + 3 ) a ]  

y ( n  + 1 + 2 )  + a + ( n  + 2 ) ( n  + 21 + 3 )  - 
- 

Pn+2 

Pni-1 

Pn 

Using repeatedly equation (2.9) for n = 0, 1, 2,  . . ., we obtain 

2 ( 2 1 + 3 ) [ ~  - (21 + 5)a] 5 = - [ E  - (21 + 3 1 4  
3(21+ 4 ) [ ~  - (21 + 7 ) a ]  

r ( 1 + 3 ) + a -  I. ,~ 
Po y ( l + 2 ) + a -  

(2.9) 

(2.10) 
y ( l + 4 ) + a - * .  . . .  

Now, equating pl/po to - [ y ( l  + 1 )  + a] / (21+2)  which follows from (2.8) by putting 
n = -1, we obtain finally 

(21 + 2 ) [ ~  - (21 + 3 ) a ]  
y ( l + l ) + a  =- 2(21+ 3 ) [ ~  - (21 + 5)a] 

y ( l + 3 ) + a -  - .  . y (1+2)+a  - (2.11) 

Equation (2.11) is the consistency condition for the existence of the solution for the 
system of equations (2.8). The solutions of (2.11) in the energy parameter are the 
energy eigenvalues for the problem, so that, following Singh et al, we define the ‘Green 
function’ of the problem as 

(2.12) 

where 

a, = n ( n  +21+ 1 ) [ ~  - (2n  +21+ l ) a ] ,  

bn = ~ ( n  + 0, n = 1 , 2 , 3  , . . . .  (2.13) 

We replaced a, the Coulomb parameter, by a complex variable 5 with respect to which 
we shall discuss the analyticity of the Green function (2.12). The Green function, by 
construction, has a pole whenever E equals the binding energy of a bound or confined 
state with a real [. We note that the infinite continued fraction (2.12) representing the 
Green function is a J-function in [. In appendix 1 we shall show that this infinite 
continued fraction representation of the Green function converges to a real mero- 
morphic function in the energy parameter E. 
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3. Convergence and analyticity 

3.1. Green’s function 

We now discuss the convergence and analyticity of the J-fraction representation (2.12) 
of the Green function. We first consider the case for the bound-state problem and 
assume that E < 0 and write E = -E, E > 0. We also choose the linear confinement 
coupling b < 0. The harmonic coupling c is always positive. We then rewrite (2.12) and 
(2.13): 

1 
G ( E ) = -  a1 b1+f+-- ai bZ+l+- 

b 3 + f + .  . (3.1) 

and 

a ,  = n ( n  + 21 + 1 ) [ ~  + (2n +21+ 1)a] > 0, 

bn = r(n + 1) > 0, n=1,2 ,3  , . . . .  (3.2) 

We derive the convergence and analyticity of the continued fraction (3.1), using a 
convergence theorem due to Van Vleck (Wall 1948, theorem 30.1, p 131). We first 
obtain the following results. 

3.1.1. Under the equivalence transformation 

the continued fraction (3.1) takes the form 

1 

l 1  
G ( E )  = - 

dl  +- 
dz+- 

d s + . .  (3.4) 

where dl = bl + f ,  f = x + iy. For the applicability of Van Vleck’s theorem, the partial 
denominators of (3.4) should satisfy the inequalities 

Re(dd > 0, lIm(dfl)l s r Re(&), n=1,2 ,3  ,..., (3.5) 

S = {f = x + i y :  1 y1 s r ( b l  +x),  r >0}. 

with r any positive number. Clearly, these inequalities define a domain S in the f plane 

(3.6) 

Since r > O  is arbitrary, S actually constitutes the half plane Re(f )2-b l .  Also 
Re(&) > 0, as can be seen from (3.2) and (3.3). 

3.1.2. Consider the set of transformations 

tn(w)  = 1/(& + U )  

generating the continued fraction (3.4) by the definition 

G ( E )  = lim t l t2 .  . . tn(0). 
n-tm 

(3.7) 

Since Re(d,) > 0 for each n, it is clear that t, = t,(w) maps the right half-plane Re(w) 3 0 
into the right half-plane Re(&) 3 0. In particular, tl = t l ( w )  maps Re(w) 3 0 into the 
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circular domain 

Itl - 1 / 2  Re(dl)l s 1 / 2  Re(dl). (3.8) 
We easily see that the transformation T,, = tlt2 . . . t,,(w) also maps Re(w) 2 0 into the 
domain (3.8). Now, since t l f 2 ,  , . fn(0) = A , ( [ ) / B , ( [ ) ,  the nth approximant of the 
continued fraction, we obtain 

IA,(S) /Bn(S)l  1/Re dl 

s 1 / S ,  Re([) 3 -bl + S > -bl (3.9) 
for each n. Hence, the sequence of approximants is uniformly bounded over every finite 
closed domain in the half plane Re([) > -bl. 

3.1.3. It is easily seen from the equations (3.3) that 

T ( n  + 1 / 2 ) ( n  + I ) !  T(l+  3 / 2 )  

r [ n  +:(2I+ 3 + &/a)] T[a(21 + 5 + &/a)] 
r ( 1 / 2 ) n ! I !  T(n + 1 + 3 / 2 )  C ~ n + 1  = 

X 
r [ i ( 2 1 + 3 + ~ / ( ~ ) ]  T [ n  + $ ( ~ I + ~ + E / ( Y ) ] '  

n ! I ! T( 1 / 2)  T ( n  + 1 + 3 / 2 )  
2 4 a r ( n  + 3 / 2 ) ( n  + 1 + l ) !  r(l + 3 / 2 )  C2"+2 = 

(3.10) 

(3.11) 

Since for large n, cn behaves as L3", we see that IdEl -n-"* and thus Z Idn/ is 
divergent. We now prove the following theorem. 

Theorem 3.1. The continued fraction (3.1) for E > 0 is uniformly convergent over every 
finite closed domain in the half plane Re([) > -bl and its value is an analytic function in 
that half plane. 

Proof. Let [ be real and [>-b l .  Then it follows immediately from Van Vleck's 
theorem and § 3.1.3 that the continued fraction (3.4), and hence the continued fraction 
(3.1), is convergent. Now, if S' is any bounded closed domain entirely within the half 
plane Re([) > -bl ,  it follows from (3.9) that the approximants of the continued fraction 
(3.1) are uniformly bounded over S'. Hence, by the convergence continuation theorem 
(Wall 1948, theorem 24.2, p 108) we obtain the theorem. 

The continued fraction (3.1) is also uniformly convergent to an analytic function in 
the left half-plane Re(()<-bl, which can be seen from the following reflection 
argument. 

We write z = 5 + bl in (3.1), so that 

1 
G ( E )  =- 

z +- a2 y + z +  
2 y + z + .  

which converges to an analytic function for Re(z) > 0. We now replace z by -2, and 
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G ( E )  in the half plane Re( t )  < 0 takes the form (after an equivalence transformation) 

This continued fraction is clearly convergent to an analytic function for Re(z) < 0. Thus 
G ( E )  is also analyticin the half plane Re([) < -bl .  Moreover, the two analytic functions 
in the half planes Re([) S -bl are actually analytic continuations of each other. This is 
easily seen if we consider values of [ such that the partial denominators of (3.4) satisfy 
the inequalities 

Re(&) < 0 ,  Re(d2) > 0, IIm(dn)j r Re(d,), r > O ;  

n = 2 , 3 , .  . . , 
In that case theorem 3.1 can be applied to the continued fraction 

(3.12) 

Thus the continued fraction (3.12) converges uniformly to an analytic function r([) in 
the half plane Re([) > -b2, and hence 

G ( E )  = l / [ b i  + t+f (C)I  
is meromorphic in Re([) > -bz ( b ~  > b l ) .  

We therefore conclude that the two analytic functions in the half planes Re(4‘) S -bl 
actually constitute a single meromorphic function in the whole [ plane whose poles lie 
on the line Re([) = -bl .  We state the above result in the following theorem. 

Theorem 3.2. The J-fraction representation (3.1) of the Green function for E < 0 for the 
potential 

V(r )  = -a / r  + br + cr2, b < O ,  c > O ,  

converges to a meromorphic function of [ whose poles lie only on the line Re([) = -bl. 
The convergence is uniform over every finite closed domain containing none of the 
poles of this function. 

To study the convergence of the Green function in the case of the confined states, we 
note that in such cases we must have E > 0. It should be noted that E > 0 ( E  = p2  + e )  also 
includes bound states with energy -p2  < e < 0. 

For E > 0, there exists a positive integer m such that 

a,, > O ,  n < m, 

holds and we can write (2.12) in the form 

a, S O ,  n a m ,  

1 
G ( E )  = - a2 b i+l - -  

b 2 + 5 - .  
am-2 

(3.13) 
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(3.14) 

Theorem 3.2 holds for G,; let it converge to a meromorphic function gm(J) .  The total 
Green function G ( E )  can be written as 

A m  - 1 (C 1 - am - 1 g m  (C )A  m - 2 (5) 
B m  - I({) - a m  - 1 gm ( f ) B m - z ( S )  

where the denominator does not vanish identically. The reason for this is that the two 
functions g, ( f )  and Bm-1(5)/Bm-2(5) possess different singularity structures; the poles 
of the former lie on the line Re(f) = -b, whereas that of the latter are all real, Bm-2(5) 
being the denominator of a (finite) real J-fraction (Wall 1948, theorem 27.1, p 114). 
Thus we have the following corollary. 

Corollary 3.3. The Green function G ( E )  for E > 0 is a meromorphic function in f ,  real 
poles of which correspond to the real eigenvalue problem. 

To study further analytic properties of the Green function, we next write 

f =  l/z 
in the continued fraction (2.12) to reduce it to the form 

G = z F  
where 

a1z2 
1 F=- 

biz + 1 - 
b 2 ~ + 1 - * .  . 

(3.15) 

The J-fraction F converges to a meromorphic function of z for all values of z ,  with a 
possible exception at z = 0. But F(0)  = 1, and this implies that F converges in the 
neighbourhood of the origin of the z plane, / z  1 < S where S is the distance of the nearest 
pole. Thus the power-series expansion of the J-fraction F, Z?w,z', has radius of 
convergence at least equal to S and its value is equal to that of the J-fraction (Wall 1948, 
theorem 54.1, p 208). Since the corresponding results hold for G we conclude the 
following. 

Theorem 3.4. The perturbation series for the Green function in the inverse powers of 
the Coulomb coupling ( f )  converges for sufficie ltly large values of f .  

3.2. Energy eigenvalues 

The Green function G ( E )  is a meromorphic function of f for any fixed real y and E. Now, 
for f = O ,  the eigenvalue problem reduces to the corresponding problem for the 
potential 

(3.16) V(r)  = br + cr2, 

and hence the consistency condition at f = 0 

G-'(E) = 0 



3168 D P Datta and S Mukherjee 

has an infinite set of solutions E = E :  for a fixed y = 7 (say). Thus G(f,  E, 7 )  is analytic in 
5 for any fixed real E except the infinite set of eigenvalues E = E: at which G has a pole at 
5 = 0. Hence G-'([, E )  is analytic at I =  0, for any fixed real E in the neighbourhood of 
an eigenvalue E = EO. 

Now, for the analyticity of G([, E )  in E we can easily see that G converges uniformly 
to a real meromorphic function in E for any fixed real 3 (see appendix 1). Hence 
G-'(l, E )  is real analytic in E in the neighbourhood of an eigenvalue E = EO, for any fixed 
real 5 near 5 = 0. 

Thus we have proved that G-'(f, E), as a function of two variables, is analytic in C in 
the neighbourhood of f = 0, for any fixed real E in the neighbourhood of E = EO, and also 
analytic in E in the neighbourhood of E = eo, for any fixed real 5 in the neighbourhood of 
[ = 0. Hence by the Malgrange-Zerner theorem (Epstein 1966) (see appendix 2) we 
see that G-'(l, E )  is analytic in the two variables in the neighbourhood of f = 0, E = E O .  

Moreover, G(0, E )  can have only simple poles in the E plane, since each energy 
eigenvalue is non-degenerate in this problem. This shows that G-'(O, E )  and 
(d/de)G-'(0, E )  cannot both vanish at the same point. Thus, at the eigenvalue E = eo, 

G-'(O, EO) = 0, (d/dE)G-l(O, E O )  # 0. 

Hence by the implicit function theorem G-'([, E )  = 0 has a unique solution E ( [ )  which is 
analytic in f at [ = 0. 

We have thus proved the following. 

Theorem 3.5. The eigenvalue ~ ( f )  is analytic at f = 0, and hence the formal pertur- 
bation series of ~ ( 5 )  in the powers of the coupling constant is convergent. 

4. Harmonium potential 

We now specialise the potential (1.1) to the harmonium potential (b  = 0). The Green 
function (3.1) then reduces to the simpler form 

1 
G(e)  = - a l  

f + - ~  5+-* f +  a: 

(4.1) 

The J-fraction (4.1) is equivalent to an S-fraction. For, under two successive 
equivalence transformations 

and 

p1= 1, Pn+ lPnZn  = 1, n = 1 , 2 , 3  ,..., (4.2b) 

the equation (4.1) becomes 

1 1 
- G(e) = -- 

l 1  & PlZ +- 
p2+- 

P3z f ' 
(4.3) 
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where we write z = 12. The continued fraction (4.2) is a standard S-fraction. Since we 
have assumed the bound-state condition e < 0, the an’s are positive and hence the pn’s 
are positive constants. We also note that Z p, is convergent. 

Hence we obtain (Wall 1948, theorem 28.2, p 120) the following results. The 
S-fraction representation of the Green function for the harmonium potential diverges 
by oscillation. The even and odd parts converge to distinct meromorphic functions 
uniformly over every finite closed domain whose distance from the negative half of the 
real axis is positive. The poles of the limit functions are all on the negative real axis of 
the 5’ plane. 

But clearly I =  0 is a square-root branch point. Choosing the branch of the first 
Riemann sheet, we conclude that the two distinct limit functions are actually analytic in 
the 4‘ plane cut along the positive imaginary axis. Hence there exists no eigenvalue for 
the harmonium potential under the bound-state condition e < 0. 

But for e > 0, eigenvalues corresponding to the confined states exist. This follows 
from the analysis applied to the continued fractions (3.13) and (3.14) with b, = 0 
( n  = 1 ,2 ,3 ,  . . .). We obtain two meromorphic functions in the cut C-plane representing 
the Green function. The real singularities of these functions actually correspond to the 
eigenvalue problem. 

Finally, since the analyticity of the Green function (in fact, of its parts) can only be 
obtained in the 5 plane with a cut running from [ = O  to [=ice, the perturbative 
expansion in t (or in I-’) must have a radius of convergence equal to zero, which follows 
directly from the arguments of 9 3.2. Thus for the harmonium potential, we obtain the 
following theorems. 

Theorem 4.1. The perturbation series for the Green function of the harmonium 
potential in the inverse powers of the Coulomb parameter is divergent. 

Theorem 4.2. The energy perturbation series in the Coulomb parameter is divergent. 

5. Summary 

We have studied the analyticity of the infinite continued fraction representation of the 
Green functions in the Coulomb coupling constant ( I )  for the confinement potentials: 

(i) a combination of harmonium and linear potentials; 
(ii) a pure harmonium potential. 
In the case (i), it is found that the Green function converges to a meromorphic 

function uniformly over every finite closed domain containing none of the poles of the 
function. The real poles of this function correspond to the real eigenvalue problem. The 
analyticity also ensures the convergence of the energy perturbation series in 5. But in 
the case (ii), the Green function diverges by oscillation for every value of 12. Still, the 
even and odd parts of the J-fraction representing the Green function possess definite 
analytic properties in the 5 plane cut along the positive imaginary axis, thus furnishing a 
solution to the eigenvalue problem. An interesting conclusion is that the energy levels 
for the harmonium potential are all positive (confined). Moreover, the divergence of 
the Green function, and also the analyticity of its parts only in a cut plane, render the 
perturbation expansion in 5 (or in l-’) totally divergent. Finally, it should be noted that 
the continued fraction representation, in any case, affords one with an alternative but 
rapid method of computing the energy levels. 
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Appendix 1. Analyticity of G ( e )  for real E 

Case 1. Let E = - E ,  E > 0 ;  f 2 -bl and let f be fixed. Then by the parabola theorem 
(Wall 1948, theorem 14.2, pp 59-60) G ( E )  given by (3.1) is convergent for each E > 0 
and the approximants lie in the interval 

Ix - 11 7 1, x # 0. 

Hence, by the convergence continuation theorem, G ( E )  converges uniformly to an 
analytic function of E (0 FS E < 00). For fixed f < -bl, the reflection argument used in the 
paragraph below theorem 3.1 is applicable, and hence G ( E )  converges to an analytic 
function of E for any fixed real f .  

Case 2. E > 0. Arguments for corollary 3.3 are applicable in this case. We note, in 
particular, that the denominator 

B m  -I(€) - am-lgm ( E  ) B n i - 2 ( ~  1 
does not vanish identically for O S E  <OO since g m ( E )  is analytic in E for any fixed f ,  
whereas B m - 1 ( ~ ) / a r n - 1 B m - 2 ( ~ )  may have a pole for a special choice of fixed real f .  

Hence G ( E )  converges to a real meromorphic function of E ( - ~ o <  E <CO) .  

Appendix 2. 

We prove here the analyticity of G-'(f ,  E )  in two variables by writing 

E =e1+ie2,  F(f ,  E )  = G-'(f,  €1, 5 = f l  + if23 

f l ( f ,  € 1 )  =F( f ,  €11, f i ( f 1 ,  E )  =F(f1, €1. 
Then (i) f l ( f ,  cl)  is analytic in 5 in the neighbourhood of f = 0; (ii) f z ( f l ,  E )  i s  analytic in E 

in the neighbourhood of E = eo. 
Thusfl and f2 have the properties stated in the Malgrange-Zerner theorem (Epstein 

1966). Hence there exists a function E ( [ ,  E )  analytic in ( f ,  E )  in the domain 

{ ( f ,  E ) :  (51, €1) in the neighbourhood of (0, E O ) ;  0 G ( 2  < SI, 
O ~ E 2 < S 2 , S 1 < 1 , S 2 < 1 ; f 2 ' t E 2 < 1 } .  

Hence, by continuity, F(f ,  E )  is analytic in  the neighbourhood of (0, eo) and E ( [ ,  E )  = 
F ( f ,  €1. 
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